Développement simple

Calcul numérique et algébrique n°10
| Dimanche 01 Septembre 2024

 
Nota Bene
Vous pouvez retrouver cet article sur YouTube !
Le texte est un peu différent : il a été relu et corrigé de nombreuses fois depuis la publication de la vidéo.
À vous de voir :)
 

Objectif
Développer, factoriser, réduire une expression algébrique simple

Question - Développer et réduire
\( A = ( \) $("#js-1").innerHTML = '\\(' + b + '-' + (b - 2) + 'x) \\times ' + a + 'x\\)';.

 
 
 
 

Pour information

Vous n'avez pas encore testé cette question ?!

Solution

Rappelons la règle de distributivité : pour tous nombres \( k \), \( a \) et \( b \),

\( k\times (a + b) = k\times a + k\times b \)

Nous appliquons la règle de développement simple.
Attention, le facteur commun est donné à la fin de l'expression !

\( A \)\( = ( \) $("#js-6").innerHTML = '\\(' + b + '-' + (b - 2) + 'x){\\color{red}\\times' + a + 'x}\\)';
\( = \) $("#js-7").innerHTML = '\\(' + b + '{\\color{red}\\times ' + a + 'x} -' + (b - 2) + 'x {\\color{red}\\times ' + a + 'x}\\)';
\( = \) $("#js-8").innerHTML = '\\(' + (b * a) + 'x -' + (a * (b - 2)) + 'x^2\\)';